China best Ys Series Three Phase Asynchronous Electrical Motor with Aluminum Shell AC Electrical Stepper Flange Gear Motor vacuum pump belt

Product Description

We, GOGOGO Mechanical&Electrical Co.,Ltd specialize in high quality energy-efficient electric motors. The combination of the best available materials, high quality sheet metal and the right amount of copper in the rotor/stator makes GOGOGO’s electric motors highly energy-efficient.

We design our electric motors to fit and match our customer’s requirements at our production site. The electric motors can be supplemented with a range of options and accessories or modified with a special design to endure any environment.
 

Electric motors account for a large part of the electricity used. If we look at the world, electric motors account for about 65 percent of the electricity used in industry. To reduce this use of electricity, there are legal requirements regarding the efficiency of electric motors manufactured in the EU, or exported into the EU.

Three-phase, single-speed asynchronous motors are covered by the requirements today. Asynchronous motors are the most common type of motor and account for 90 percent of the electricity consumption of all electric motors in the power range 0.75 – 375 kW.

According to that standard, the energy efficiency classes have the designations IE1, IE2, IE3 and IE4, where IE4 has the highest efficiency.

 

Revision of the standard

A revision of the standard was decided by the Ecodesign Committee in 2019. The revision was published on October 1, 2019. The following will apply:

For electric motors

From July 1, 2571

2-, 4-, 6- and 8-pole motors from 0.75 – 1000 kW (previously up to 375kW) are included in efficiency class IE3.

Motors within the range 0.12 – 0.75 kW must meet efficiency class IE2.

The previous possibility to replace IE3 motors with an IE2 motor with frequency drive disappears.

From July 1, 2571

For 2-, 4-, 6- and 8-pole motors from 0.12 – 1000 kW, the efficiency class IE2 now also applies to Ex eb certified motors with high safety.

Single phase motors with greater power than 0.12 kW are covered by the corresponding IE2 class.

The higher efficiency class IE4 applies to 2, 4 and 6-pole motors between 75 – 200 kW.

For frequency inverters

From July 1, 2571

For use with electric motors with power from 0.12 – 1000 kW, the frequency inverter must pass efficiency class IE2 specially designed for inverters.

Current requirements according to the Directive

Since 16 June, 2011 it is prohibited to place electric motors below energy efficiency class IE2 on the market, or to put them into service in the EU.

Since January 1, 2015, electric motors within the range 7.5 – 375 kW (2-, 4-, and 6-pole) must meet the requirements for IE3, or IE2 if the latter is combined with frequency inverters for speed control. The legal requirement thus provides 2 options.

From January 1, 2017, the requirements were tightened so that all motors 0.75 – 375 kW (2-, 4-, and 6-pole) must meet the requirements for IE3, or IE2 if they are combined with frequency inverters.

Exemptions from the current directive

  • Operation other than S1 (continuous drive) or S3 (intermittent drive) with a nominal cyclicity factor of 80 percent or lower.
  • Made for assembly with frequency inverters (integral motors).
  • Electric motors made for use in liquid.
  • Electric motors that are fully integrated into a product (e.g. a gear, pump, fan or compressor) where the energy performance is not tested independently of the product.
  • Brake motors

Electric motors intended for operation exclusively:

  • At altitudes exceeding 4 000 CHINAMFG above sea level.
  • If ambient air temperatures exceed 60°C.
  • Where maximum operating temperature exceeds 400°C.
  • Where ambient air temperatures are less than -30°C for all motors, or less than 0°C for motors with water cooling.
  • In explosive atmospheres (as defined in Directive 94/9 / EC 9)

The requirements do not apply to ships or other means of transport that carry goods or persons, since there must be specially designed engines for this purpose. (If the same mobile conveyor belt is used on ships as well as on land, the rules apply).

Also, the requirements do not apply to repair of motors previously placed on the market, or put into service – unless the repair is so extensive that the product will in practice be brand new.

If the motor is to be further exported for use outside Europe, the requirements do not apply.

Some other requirements apply to water-cooled motors

We have our own design and development team, we can provide customers with standard AC electric motors, We can also customize the single phase/three phase motors according to the special needs of customers.    Currently our main motor products cover 3 – phase high – efficiency motors,general 3 – phase motors, single phase motors, etc.
The main motor ranges: IE3 / YE3, IE2 / YE2, IE1 / Y2, Y, YS, MS, YC, YL, YY, MC, MY, ML motors.
 American standard NEMA motors
Russian standard GOST ANP motors
ZheJiang type AEEF motors,YC motors

Why choose us?
Guarantee of our motors:18-24months
General elivery time:15-30days
Price of motors: Most reasonable during your all suppliers
Packing:Strong export cartons/wooden case/plywood cases/pallets
Payment way with your order: T/T,LC,DP,etc

Sample order: Acceptable
Shipment way: Sea ship,Air flight,Express way,Land transfer way.

If you are looking for new better supplier or purchase electric motors, please feel free contact us now.You will get all what you want. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 2
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

Where can individuals find reliable resources for learning more about gear motors and their applications?

Individuals seeking to learn more about gear motors and their applications have access to various reliable resources that provide valuable information and insights. Here are some sources where individuals can find reliable information about gear motors:

1. Manufacturer Websites:

Manufacturer websites are a primary source of information about gear motors. Gear motor manufacturers often provide detailed product specifications, application guides, technical documentation, and educational materials on their websites. These resources offer insights into different gear motor types, features, performance characteristics, and application considerations. Manufacturer websites are a reliable and convenient starting point for learning about gear motors.

2. Industry Associations and Organizations:

Industry associations and organizations related to mechanical engineering, automation, and motion control often have resources and publications dedicated to gear motors. These organizations provide technical articles, whitepapers, industry standards, and guidelines related to gear motor design, selection, and application. Examples of such associations include the American Gear Manufacturers Association (AGMA), International Electrotechnical Commission (IEC), and Institute of Electrical and Electronics Engineers (IEEE).

3. Technical Publications and Journals:

Technical publications and journals focused on engineering, robotics, and motion control are valuable sources of in-depth knowledge about gear motors. Publications like IEEE Transactions on Industrial Electronics, Mechanical Engineering magazine, or Motion System Design magazine often feature articles, case studies, and research papers on gear motor technology, advancements, and applications. These publications provide authoritative and up-to-date information from industry experts and researchers.

4. Online Forums and Communities:

Online forums and communities dedicated to engineering, robotics, and automation can be excellent resources for discussions, insights, and practical experiences related to gear motors. Websites like Stack Exchange, engineering-focused subreddits, or specialized forums provide platforms for individuals to ask questions, share knowledge, and engage in discussions with professionals and enthusiasts in the field. Participating in these communities allows individuals to learn from real-world experiences and gain practical insights.

5. Educational Institutions and Courses:

Technical colleges, universities, and vocational training centers often offer courses or programs in mechanical engineering, mechatronics, or automation that cover gear motor fundamentals and applications. These educational institutions provide comprehensive curricula, textbooks, and lecture materials that can serve as reliable resources for individuals interested in learning about gear motors. Additionally, online learning platforms like Coursera, Udemy, or LinkedIn Learning offer courses on topics related to gear motors and motion control.

6. Trade Shows and Exhibitions:

Attending trade shows, exhibitions, and industry conferences related to automation, robotics, or motion control provides opportunities to learn about the latest advancements in gear motor technology. These events often feature product demonstrations, technical presentations, and expert panels where individuals can interact with gear motor manufacturers, industry experts, and other professionals. It’s a great way to stay updated on the latest trends, innovations, and applications of gear motors.

When seeking reliable resources, it’s important to consider the credibility of the source, the expertise of the authors, and the relevance to the specific area of interest. By leveraging these resources, individuals can gain a comprehensive understanding of gear motors and their applications, from basic principles to advanced topics, enabling them to make informed decisions and effectively utilize gear motors in their projects or applications.

gear motor

Can you explain the role of backlash in gear motors and how it’s managed in design?

Backlash plays a significant role in gear motors and is an important consideration in their design and operation. Backlash refers to the slight clearance or play between the teeth of gears in a gear system. It affects the precision, accuracy, and responsiveness of the gear motor. Here’s an explanation of the role of backlash in gear motors and how it is managed in design:

1. Role of Backlash:

Backlash in gear motors can have both positive and negative effects:

  • Compensation for Misalignment: Backlash can help compensate for minor misalignments between gears, shafts, or the load. It allows a small amount of movement before engaging the next set of teeth, reducing the risk of damage due to misalignment. This can be particularly beneficial in applications where precise alignment is challenging or subject to variations.
  • Negative Impact on Accuracy and Responsiveness: Backlash can introduce a delay or “dead zone” in the motion transmission. When changing the direction of rotation or reversing the load, the gear teeth must first overcome the clearance or play before engaging in the opposite direction. This delay can reduce the overall accuracy, responsiveness, and repeatability of the gear motor, especially in applications that require precise positioning or rapid changes in direction or speed.

2. Managing Backlash in Design:

Designers employ various techniques to manage and minimize backlash in gear motors:

  • Tight Manufacturing Tolerances: Proper manufacturing techniques and tight tolerances can help minimize backlash. Precision machining and quality control during the production of gears and gear components ensure closer tolerances, reducing the amount of play between gear teeth.
  • Preload or Pre-tensioning: Applying a preload or pre-tensioning force to the gear system can help reduce backlash. This technique involves introducing an initial force or tension that eliminates the clearance between gear teeth. It ensures immediate contact and engagement of the gear teeth, minimizing the dead zone and improving the overall responsiveness and accuracy of the gear motor.
  • Anti-Backlash Gears: Anti-backlash gears are designed specifically to minimize or eliminate backlash. They typically feature modifications to the gear tooth profile, such as modified tooth shapes or special tooth arrangements, to reduce clearance. Anti-backlash gears can be used in gear motor designs to improve precision and minimize the effects of backlash.
  • Backlash Compensation: In some cases, backlash compensation techniques can be employed. These techniques involve monitoring the position or movement of the load and applying control algorithms to compensate for the backlash. By accounting for the clearance and adjusting the control signals accordingly, the effects of backlash can be mitigated, improving accuracy and responsiveness.

3. Application-Specific Considerations:

The management of backlash in gear motors should be tailored to the specific application requirements:

  • Positioning Accuracy: Applications that require precise positioning, such as robotics or CNC machines, may require tighter backlash control to ensure accurate and repeatable movements.
  • Dynamic Response: Applications that involve rapid changes in direction or speed, such as high-speed automation or servo control systems, may require reduced backlash to maintain responsiveness and minimize overshoot or lag.
  • Load Characteristics: The nature of the load and its impact on the gear system should be considered. Heavy loads or applications with significant inertial forces may require additional backlash management techniques to maintain stability and accuracy.

In summary, backlash in gear motors can affect precision, accuracy, and responsiveness. While it can compensate for misalignments, backlash may introduce delays and reduce the overall performance of the gear motor. Designers manage backlash through tight manufacturing tolerances, preload techniques, anti-backlash gears, and backlash compensation methods. The management of backlash depends on the specific application requirements, considering factors such as positioning accuracy, dynamic response, and load characteristics.

gear motor

Are there specific considerations for selecting the right gear motor for a particular application?

When selecting a gear motor for a specific application, several considerations need to be taken into account. The choice of the right gear motor is crucial to ensure optimal performance, efficiency, and reliability. Here’s a detailed explanation of the specific considerations for selecting the right gear motor for a particular application:

1. Torque Requirement:

The torque requirement of the application is a critical factor in gear motor selection. Determine the maximum torque that the gear motor needs to deliver to perform the required tasks. Consider both the starting torque (the torque required to initiate motion) and the operating torque (the torque required to sustain motion). Select a gear motor that can provide adequate torque to handle the load requirements of the application. It’s important to account for any potential torque spikes or variations during operation.

2. Speed Requirement:

Consider the desired speed range or specific speed requirements of the application. Determine the rotational speed (in RPM) that the gear motor needs to achieve to meet the application’s performance criteria. Select a gear motor with a suitable gear ratio that can achieve the desired speed at the output shaft. Ensure that the gear motor can maintain the required speed consistently and accurately throughout the operation.

3. Duty Cycle:

Evaluate the duty cycle of the application, which refers to the ratio of operating time to rest or idle time. Consider whether the application requires continuous operation or intermittent operation. Determine the duty cycle’s impact on the gear motor, including factors such as heat generation, cooling requirements, and potential wear and tear. Select a gear motor that is designed to handle the expected duty cycle and ensure long-term reliability and durability.

4. Environmental Factors:

Take into account the environmental conditions in which the gear motor will operate. Consider factors such as temperature extremes, humidity, dust, vibrations, and exposure to chemicals or corrosive substances. Choose a gear motor that is specifically designed to withstand and perform optimally under the anticipated environmental conditions. This may involve selecting gear motors with appropriate sealing, protective coatings, or materials that can resist corrosion and withstand harsh environments.

5. Efficiency and Power Requirements:

Consider the desired efficiency and power consumption of the gear motor. Evaluate the power supply available for the application and select a gear motor that operates within the specified voltage and current ranges. Assess the gear motor’s efficiency to ensure that it maximizes power transmission and minimizes wasted energy. Choosing an efficient gear motor can contribute to cost savings and reduced environmental impact.

6. Physical Constraints:

Assess the physical constraints of the application, including space limitations, mounting options, and integration requirements. Consider the size, dimensions, and weight of the gear motor to ensure it can be accommodated within the available space. Evaluate the mounting options and compatibility with the application’s mechanical structure. Additionally, consider any specific integration requirements, such as shaft dimensions, connectors, or interfaces that need to align with the application’s design.

7. Noise and Vibration:

Depending on the application, noise and vibration levels may be critical factors. Evaluate the acceptable noise and vibration levels for the application’s environment and operation. Choose a gear motor that is designed to minimize noise and vibration, such as those with helical gears or precision engineering. This is particularly important in applications that require quiet operation or where excessive noise and vibration may cause issues or discomfort.

By considering these specific factors when selecting a gear motor for a particular application, you can ensure that the chosen gear motor meets the performance requirements, operates efficiently, and provides reliable and consistent power transmission. It’s important to consult with gear motor manufacturers or experts to determine the most suitable gear motor based on the specific application’s needs.

China best Ys Series Three Phase Asynchronous Electrical Motor with Aluminum Shell AC Electrical Stepper Flange Gear Motor   vacuum pump belt	China best Ys Series Three Phase Asynchronous Electrical Motor with Aluminum Shell AC Electrical Stepper Flange Gear Motor   vacuum pump belt
editor by CX 2024-01-16

Gear Motor

As one of the gear motor manufacturers, suppliers, and exporters of mechanical products, We offer gear motors and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of gear motors.

Recent Posts