China Good quality 90mm 40W 220V DC Brushless Hollow Flat Gear Motor for Food Machine vacuum pump belt

Product Description

DC Brushless Hollow Flat Gear Motor
G 5 BLD(P) 40 220 GN 30S
Enterprise Code Mounting Flange Motor Type Output Power Voltage Shape of Motor Shaft Motor Speed
G – GPG 2-60mm
3-70mm
4-80mm
5-90mm
6-100mm
BLD – Brushless motor
            with square gearbox

BLDP – Brushless motor
              with planetary gearbox 

10 – 10W
15 – 15W
25 – 25W
40 – 40W
60 – 60W
90 – 90W
200 – 200W
400 – 400W
24 – DC24V
36 – DC36V
48 – DC48V
110 – DC110V
220 – DC220V
GN – General Helical Gear
GU – Reinforced Helical Gear
A1 – Milling Keyway
A – Flat type
15S – 1500RPM
18S – 1800RPM
25S – 2500RPM
30S – 3000RPM
Gearbox
5 GFS 15 K 20
Model & Dimension Gear Type Reduction Ratio Bearing Type Out-shaft Diameter
2: 60mm
4: 80mm
5: 90mm
6: 100mm
Flat Boxes
Hollow Output
15
The reduction ratio of reducer can be said speed ratio range, for example, 50-75, may also be a separate ratio,
for example 15
K: standard rolling bearing
H: sliding bearing
L: axle type
Z: hybrid bearings
20: Φ20mm

Motor Performance Parameters
Model Voltage Frequency Rated Power Rated Current Rated Speed Rated Torque Grade Protection
V Hz W A RPM N.m IP
G5BLD40-220GN-30S 220~230 50/60 40 0.4 3000 0.127 44
110~220 0.8
G5BLD60-220GN-30S 220~230 60 0.6 0.191
110~220 1.2
G5BLD90-220GN-30S 220~230 90 0.9 0.286
110~220 1.8
Motor Model
Type Pinion Shaft Round Shaft
Lead Wire G5BLD40-220GN-30S G5BLD40-220A1 -30S
G5BLD60-220GN-30S G5BLD60-220A1 -30S
G5BLD90-220GN-30S G5BLD90-220A1 -30S
Parallel Shaft Gearhead (Sold Separately)
Gearhead Type Gearhead Model Gear Ratio
Long Life, Low Noise 5GFS_K 3, 3.6, 5, 6, 7.5, 9, 12.5, 15, 18,
25, 30, 36, 50, 60, 75, 90,
100, 120, 150, 180, 200
5GU10XK ( Decimal Gearhead ) 
Allowance Torque Unit: Upside (N-m) / Belowside (kgf.cm)
Gear Ratio 3 3.6 5 6 7.5 9 12.5 15 18 25 30 36 50 60 75 90 100 120 150 180 200
r/min Output Shaft Speed 1000 830 600 500 400 330 240 200 166 120 100 83 60 50 40 33 30 25 20 16 15
GU Allowance Torque N·m  1.12 1.34 1.86 2.24 2.8 3.35 4.2 5.04 6.04 7.59 9.11 10.9 15.2 18.2 20 20 20 20 20 20 20

CHINAMFG Motor Industrial Group Co., Ltd. is a professional manufacturer which combined with series gear transmission products of design , manufacture, and sale promotion.
occupied more than 30,000 square meters, had more than 1000 workers, and more than 200 sets of advanced equipment,
operated strictly according to ISO9000 Quality management system.
• provide you with more than just high-performance products, more industry users tailored package of application solutions,
• based on corporate issues, to provide users with the most suitable products, the most suitable solution.
• Lead customer innovation through the products and service, help the customer realize the maximum benefit.
• 1995: CHINAMFG Company and the Ministry of Aerospace, Peking University,
               and scientific research experts jointly established a micro-micro motor manufacturing company
• 2000: CHINAMFG established a branch in HangZhou, ZHangZhoug
• 2005: ZHangZhoug CHINAMFG Motor Industry Co., Ltd. established HangZhou ZheJiang State-owned Industrial Co., Ltd.
• 2012: Established ZheJiang CHINAMFG Automobile Co., Ltd.
• 2014: Approved the new factory site of the second phase of the HangZhou National Economic Park in ZHangZhoug Province,
               which is expected to be completed and put into operation in 2018
• 2018:  A new 120,000 square CHINAMFG automated production base

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Protection Type
Number of Poles: 4
Customization:
Available

|

gear motor

Can gear motors be used in robotics, and if so, what are some notable applications?

Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

1. Robotic Arm Manipulation:

Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

2. Mobile Robots:

Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

3. Robotic Grippers and End Effectors:

Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

4. Autonomous Drones and UAVs:

Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

5. Humanoid Robots:

Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

6. Robotic Exoskeletons:

Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

gear motor

How does the voltage and power rating of a gear motor impact its suitability for different tasks?

The voltage and power rating of a gear motor are important factors that influence its suitability for different tasks. These specifications determine the motor’s electrical characteristics and its ability to perform specific tasks effectively. Here’s a detailed explanation of how voltage and power rating impact the suitability of a gear motor for different tasks:

1. Voltage Rating:

The voltage rating of a gear motor refers to the electrical voltage it requires to operate optimally. Here’s how the voltage rating affects suitability:

  • Compatibility with Power Supply: The gear motor’s voltage rating must match the available power supply. Using a motor with a voltage rating that is too high or too low for the power supply can lead to improper operation or damage to the motor.
  • Electrical Safety: Adhering to the specified voltage rating ensures electrical safety. Using a motor with a higher voltage rating than recommended can pose safety hazards, while using a motor with a lower voltage rating may result in inadequate performance.
  • Application Flexibility: Different tasks or applications may have specific voltage requirements. For example, low-voltage gear motors are commonly used in battery-powered devices or applications with low-power requirements, while high-voltage gear motors are suitable for industrial applications or tasks that require higher power output.

2. Power Rating:

The power rating of a gear motor indicates its ability to deliver mechanical power. It is typically specified in units of watts (W) or horsepower (HP). The power rating impacts the suitability of a gear motor in the following ways:

  • Load Capacity: The power rating determines the maximum load that a gear motor can handle. Motors with higher power ratings are capable of driving heavier loads or handling tasks that require more torque.
  • Speed and Torque: The power rating affects the motor’s speed and torque characteristics. Motors with higher power ratings generally offer higher speeds and greater torque output, making them suitable for applications that require faster operation or the ability to overcome higher resistance or loads.
  • Efficiency and Energy Consumption: The power rating is related to the motor’s efficiency and energy consumption. Higher power-rated motors may be more efficient, resulting in lower energy losses and reduced operating costs over time.
  • Thermal Considerations: Motors with higher power ratings may generate more heat during operation. It is crucial to consider the motor’s power rating in relation to its thermal management capabilities to prevent overheating and ensure long-term reliability.

Considerations for Task Suitability:

When selecting a gear motor for a specific task, it is important to consider the following factors in relation to the voltage and power rating:

  • Required Torque and Load: Assess the torque and load requirements of the task to ensure that the gear motor’s power rating is sufficient to handle the expected load without being overloaded.
  • Speed and Precision: Consider the desired speed and precision of the task. Motors with higher power ratings generally offer better speed control and accuracy.
  • Power Supply Availability: Evaluate the availability and compatibility of the power supply with the gear motor’s voltage rating. Ensure that the power supply can provide the required voltage for the motor’s optimal operation.
  • Environmental Factors: Consider any specific environmental factors, such as temperature or humidity, that may impact the gear motor’s performance. Ensure that the motor’s voltage and power ratings are suitable for the intended operating conditions.

In summary, the voltage and power rating of a gear motor have significant implications for its suitability in different tasks. The voltage rating determines compatibility with the power supply and ensures electrical safety, while the power rating influences load capacity, speed, torque, efficiency, and thermal considerations. When choosing a gear motor, it is crucial to carefully evaluate the task requirements and consider the voltage and power rating in relation to factors such as torque, speed, power supply availability, and environmental conditions.

gear motor

Are there specific considerations for selecting the right gear motor for a particular application?

When selecting a gear motor for a specific application, several considerations need to be taken into account. The choice of the right gear motor is crucial to ensure optimal performance, efficiency, and reliability. Here’s a detailed explanation of the specific considerations for selecting the right gear motor for a particular application:

1. Torque Requirement:

The torque requirement of the application is a critical factor in gear motor selection. Determine the maximum torque that the gear motor needs to deliver to perform the required tasks. Consider both the starting torque (the torque required to initiate motion) and the operating torque (the torque required to sustain motion). Select a gear motor that can provide adequate torque to handle the load requirements of the application. It’s important to account for any potential torque spikes or variations during operation.

2. Speed Requirement:

Consider the desired speed range or specific speed requirements of the application. Determine the rotational speed (in RPM) that the gear motor needs to achieve to meet the application’s performance criteria. Select a gear motor with a suitable gear ratio that can achieve the desired speed at the output shaft. Ensure that the gear motor can maintain the required speed consistently and accurately throughout the operation.

3. Duty Cycle:

Evaluate the duty cycle of the application, which refers to the ratio of operating time to rest or idle time. Consider whether the application requires continuous operation or intermittent operation. Determine the duty cycle’s impact on the gear motor, including factors such as heat generation, cooling requirements, and potential wear and tear. Select a gear motor that is designed to handle the expected duty cycle and ensure long-term reliability and durability.

4. Environmental Factors:

Take into account the environmental conditions in which the gear motor will operate. Consider factors such as temperature extremes, humidity, dust, vibrations, and exposure to chemicals or corrosive substances. Choose a gear motor that is specifically designed to withstand and perform optimally under the anticipated environmental conditions. This may involve selecting gear motors with appropriate sealing, protective coatings, or materials that can resist corrosion and withstand harsh environments.

5. Efficiency and Power Requirements:

Consider the desired efficiency and power consumption of the gear motor. Evaluate the power supply available for the application and select a gear motor that operates within the specified voltage and current ranges. Assess the gear motor’s efficiency to ensure that it maximizes power transmission and minimizes wasted energy. Choosing an efficient gear motor can contribute to cost savings and reduced environmental impact.

6. Physical Constraints:

Assess the physical constraints of the application, including space limitations, mounting options, and integration requirements. Consider the size, dimensions, and weight of the gear motor to ensure it can be accommodated within the available space. Evaluate the mounting options and compatibility with the application’s mechanical structure. Additionally, consider any specific integration requirements, such as shaft dimensions, connectors, or interfaces that need to align with the application’s design.

7. Noise and Vibration:

Depending on the application, noise and vibration levels may be critical factors. Evaluate the acceptable noise and vibration levels for the application’s environment and operation. Choose a gear motor that is designed to minimize noise and vibration, such as those with helical gears or precision engineering. This is particularly important in applications that require quiet operation or where excessive noise and vibration may cause issues or discomfort.

By considering these specific factors when selecting a gear motor for a particular application, you can ensure that the chosen gear motor meets the performance requirements, operates efficiently, and provides reliable and consistent power transmission. It’s important to consult with gear motor manufacturers or experts to determine the most suitable gear motor based on the specific application’s needs.

China Good quality 90mm 40W 220V DC Brushless Hollow Flat Gear Motor for Food Machine   vacuum pump belt	China Good quality 90mm 40W 220V DC Brushless Hollow Flat Gear Motor for Food Machine   vacuum pump belt
editor by CX 2024-03-07

Gear Motor

As one of the gear motor manufacturers, suppliers, and exporters of mechanical products, We offer gear motors and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of gear motors.

Recent Posts